

Solar Photovoltaic Glint and Glare Study

Prepared for:

Bookaar Solar Farm Pty Limited

Bookaar Solar Farm

April, 2018

www.pagerpower.com

ADMINISTRATION PAGE

Job Reference:	9201A	
Date:	March, 2018	
Author:	Danny Scrivener	
Telephone:	+44 (0) 1787 319001	
Email:	danny@pagerpower.com	

First Reviewer:	Kai Frolic
Date:	March, 2018
Telephone:	+44 (0) 1787 319001
Email:	kai@pagerpower.com

Issue	Date	Detail of Changes	
1	March, 2018	First edition	
2	25 April, 2018	Revision following comments	
3	26 April, 2018	Amendment to dwelling numbers and IDs	

Confidential: The contents of this document may not be disclosed to others without permission. Copyright © Pager Power Limited 2018

Pager Power Limited, South Suffolk Business Centre, Alexandra Road, Sudbury, CO10 2ZX

T:+44 (0)1787 319 001 E:info@pagerpower.com W:<u>www.pagerpower.com</u>

2

EXECUTIVE SUMMARY

Report Purpose

Pager Power has been retained to assess the possible effects of glint and glare from the proposed Bookaar Solar Farm located in south western Victoria, Australia. This assessment pertains to the possible effects upon surrounding roads and dwellings. The analysis includes modelling of a tracking system that optimises the panel angle throughout the day to maximise electricity generation.

Pager Power

Pager Power has undertaken over 300 glint and glare assessments in locations such as Australia, India and Europe. The company's own glint and glare guidance is based on industry experience and extensive consultation with industry stakeholders including airports and aviation regulators.

Guidance

There is limited glint and glare guidance for the assessment of proposed solar photovoltaic (PV) developments. Pager Power's methodology is based on independent studies, consultation with stakeholders and experience drawn from completion of over 300 glint and glare assessments.

The available studies have measured the intensity of reflections from solar panels with respect to other naturally occurring and manmade surfaces. The results show that the reflections produced are of intensity similar to or less than those produced from still water and significantly less than reflections from glass and steel¹.

Glint and Glare

The definition of glint and glare used by Pager Power is as follows:

- Glint a momentary flash of bright light;
- Glare a continuous source of bright light.

General Effects of Glint and Glare

Glint and glare effects can only ever occur when the weather is clear and sunny. In the scenario where a solar reflection is possible towards a road user or resident in a surrounding dwelling, the individual will also be looking in the general direction of the Sun. This means the Sun and solar reflection will be visible simultaneously. The Sun is a significantly brighter source of light. Lastly, at any one location, only a particular area of solar panels will produce a solar reflection towards it. Not all receptors will experience a solar reflection at the same time.

Results

Surrounding Roads

Solar reflections are theoretically possible towards approximately 2.6km of road classified as an arterial road. Road users are expected to be travelling at (up to) 100 km/h with a low density of traffic expected. Any solar reflection could last for up to 20 minutes, however in reality, its duration would depend on the speed of the car travelling through the solar reflection zone. In accordance with the methodology set out in Section 3 and Appendix E, the overall expected impact upon road users with respect to safety is classified as low (at worst) where the reflecting solar panels are visible. Where the solar panels are not visible, there is no impact.

3

¹ SunPower, 2009, SunPower Solar Module Glare and Reflectance (appendix to Solargen Energy, 2010).

Surrounding Dwellings

Solar reflections are possible towards five surrounding dwelling receptors. At these dwellings, views of the proposed solar farm and the reflecting solar panels has not been confirmed. The solar reflections would last for up to 20 minutes per day potentially all year round from windows with a clear view of the reflecting solar panels. The results vary per dwelling therefore see Section 5.3 and Appendix G for the detailed results breakdown for each dwelling. In all cases, a clear view of the reflecting solar panels at the particular time of day when a solar reflection was geometrically possible would be required. In addition, the weather would also have to be clear and sunny. In accordance with the methodology set out in Section 3 and Appendix E, the resulting impact significance is low to moderate at these dwellings. If proposed screening removes the solar panels from view, no impact will be possible.

Council Viewpoints

All three viewpoints (Mt Laura, Camperdown Botanic Gardens and Mt Elephant) are beyond 7km from the proposed solar farm and are situated north and south of the panel area. It is Pager Power's methodology to consider receptors within 1km of a solar panel. Furthermore, no solar reflection would be expected at these viewpoints considering the geographic relationship to the proposed solar farm. Considering this, no impact is expected at these viewpoints.

Mitigation

Four metre high screening will be installed at the site boundary between the dwellings where a solar reflection may be possible. This will likely remove any visibility of the solar panels because the landscape is relatively flat, the distance between receptors and panels is relatively large and the solar panels are 4m tall at their maximum tilt, equal to the screening height. Therefore any predicted impacts at these dwellings, and also the roads, would likely be removed.

LIST OF CONTENTS

Admin	ninistration Page2				
Execu	tive S	ummary	3		
	Report Purpose				
	Pager Power				
	Guida	ance	3		
	Glint	and Glare	3		
	Results3				
	Mitiga	ation	4		
List of	Conte	ents	5		
List of	Figure	əs	7		
List of	Table	S	7		
About	Pager	Power	8		
1	Introd	duction	9		
	1.1	Overview	9		
	1.2	Pager Power's Experience	9		
	1.3	Understanding Glint and Glare – General Overview and Definition	9		
2	Prop	osed Solar Farm Location and Details	10		
	2.1	Photovoltaic Panel Mounting Arrangements and Orientation	10		
	2.2	Tracking System	10		
	2.3 Proposed Solar Farm Panel Area12				
3	Glint	and Glare Assessment Methodology	14		
	3.1	Guideline and Studies Overview	14		
	3.2	Background	14		
	3.3	Methodology	14		
	3.4	Assessment Limitations	15		
4	Ident	ification of Receptors & Modelling Overview	16		
	4.1	Ground Level Receptors – Overview	16		
	4.2	Modelling Overview	16		
	4.3	Road Receptors	17		
	4.4	Dwelling Receptors	20		
	4.5 Elevated Receptors in Wider Region – Viewpoints				
	4.6	Conditions for a Reflection	22		
5	Glint	and Glare Assessment	23		
	5.1	Results	23		

	5.2	Modelling Results Overview – Roads		
	5.3	Modelling Results Overview – Dwellings		
6	Res	ults Discussion	29	
	6.1	Road Results		
	6.2	Dwelling Results		
	6.3	Results Discussion Regarding Reflections from Solar Panels		
	6.4	Mitigation and Recommendations		
7	Ove	rall Conclusions	34	
	7.1	Road Results		
	7.2	Dwelling Results		
	7.3	Council Viewpoints		
Арре	endix A	- Overview of Glint and Glare Guidance	35	
	UK F	Planning Policy	35	
	Asse	essment Process	35	
Арре	endix B	- Overview of Glint and Glare Studies	36	
	Over	view		
	Refle	ection Type from Solar Panels		
	Sola	r Reflection Studies		
Арре	endix C	- Pager Power's Reflection Calculations Methodology	39	
Арре	endix D	- Assessment Limitations and Assumptions	40	
Арре	endix E	– Assessment Methodology	41	
	Over	view	41	
	Impa	act significance definition	41	
	Asse	essment Process – General		
	Asse	essment process for road receptors		
	Asse	essment process for dwelling receptors		
Арре	endix F	- Coordinate Data	45	
	Road	d Receptors	45	
	Dwe	Iling Receptors	45	
	View	point Receptors		
	Pane	el Area Boundary Co-Ordinates		
Арре	Appendix G – Geometric Calculation Results49			
	Road	d Receptors		
	Dwe	Iling Receptors		

LIST OF FIGURES

Figure 1 Panel tracking details – 1	10
Figure 2 Panel tracking details – 2	11
Figure 3 Shading considerations	11
Figure 4 Panel alignment at high solar angles	12
Figure 5 Solar Farm Development Area	13
Figure 6 Modelled points within the solar farm	16
Figure 7 Road receptors 1-30	18
Figure 8 Road receptors 19-48	19
Figure 9 Dwelling receptors	20
Figure 10 Viewpoint receptors	21
Figure 11 Calculating reflections	22
Figure 12 Sections of road that could experience a solar reflection	30
Figure 13 Dwellings that could experience a solar reflection	31

LIST OF TABLES

Table 1 Geometric glint and glare reflection calculation results – roads	.26
Table 2 Geometric glint and glare reflection calculation results – dwellings	.28
Table 3 Dwelling visibility site survey results	33

ABOUT PAGER POWER

Pager Power is a dedicated consultancy company based in Suffolk, UK. The company has undertaken projects in 43 countries within Europe, Africa, America, Asia and Australasia.

The company comprises a team of experts to provide technical expertise and guidance on a range of planning issues for large and small developments.

Pager Power was established in 1997. Initially the company focus was on modelling the impact of wind turbines on radar systems. Over the years, the company has expanded into numerous fields including:

- Renewable energy projects;
- Building developments; and
- Aviation and telecommunication systems.

Pager Power prides itself on providing comprehensive, understandable and accurate assessments of complex issues in line with national and international standards. This is underpinned by its custom software, longstanding relationships with stakeholders and active role in conferences and research efforts around the world.

Pager Power's assessments withstand legal scrutiny and the company can provide support for a project at any stage.

1 INTRODUCTION

1.1 Overview

Pager Power has been retained to assess the possible effects of glint and glare from the proposed Bookaar Solar Farm located in south western Victoria, Australia.

This assessment pertains to the possible effects upon surrounding roads and dwellings. This report contains the following:

- Solar farm details;
- Explanation of glint and glare;
- Overview of relevant guidance;
- Overview of relevant studies;
- Overview of Sun movement;
- Assessment methodology;
- Identification of receptors;
- Glint and glare assessment for identified receptors;
- Results discussion; and
- Mitigation.

Following this a summary of findings and overall conclusions and recommendations is presented.

1.2 Pager Power's Experience

Pager Power has undertaken over 300 Glint and Glare assessments internationally. The studies have included assessment of civil and military aerodromes, railway infrastructure and other ground based receptors including roads and dwellings.

1.3 Understanding Glint and Glare – General Overview and Definition

When sunlight illuminates an object, an amount of the incident light is reflected. This reflected light, when directed towards the eye of an observer, can become noticeable and cause a distraction or a nuisance. The definition of glint and glare can vary. The definition used by Pager Power is as follows:

- Glint a momentary flash of bright light.
- Glare a continuous source of bright light.

In context, glint will be witnessed by moderate to fast moving receptors whilst glare would be encountered by static or slow moving receptors with respect to a solar farm. The term 'solar reflection' is used in this report to refer to both reflection types i.e. glint and glare. Where reflected sunlight may be visible to a receptor, it can be concluded that glint and glare effects are possible.

2 PROPOSED SOLAR FARM LOCATION AND DETAILS

2.1 Photovoltaic Panel Mounting Arrangements and Orientation

The solar panels will be mounted to the ground and fitted to a single-axis tracking system that tilts the panels from east to west throughout the day. A single-axis tracking system has been modelled in this report however fixed panels are being retained as an option are also being considered.

2.2 Tracking System

It is understood that:

- The azimuth angle of the panels will be 90 degrees in the morning and 270 degrees in the evening. During solar noon, when the Sun is directly overhead, the panels will be flat, directed immediately upwards.
- The tilt of the panels throughout the day is programmed, based on the known path of the Sun and shading considerations i.e. the tilt angle is optimised to avoid having one row of panels cast a shadow on another row.
- The range of elevation angles will be ±60°.

The panel details are illustrated in Figures 1 and 2 below.

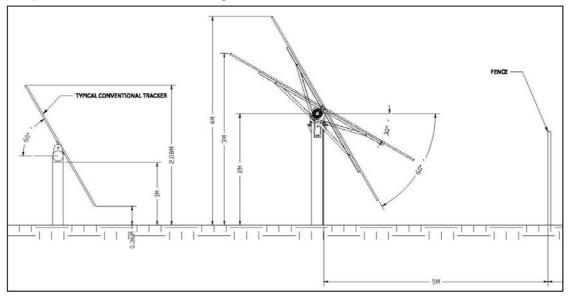


Figure 1 Panel tracking details - 1

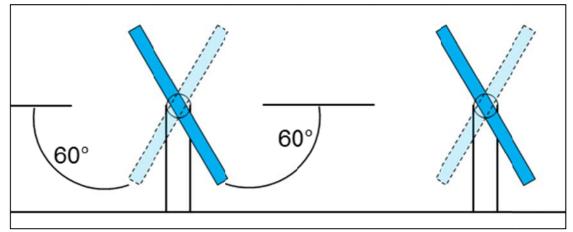


Figure 2 Panel tracking details - 2

Shading considerations that dictate the panel tilt. This is affected by:

- The elevation angle of the Sun;
- The vertical tilt of the panels; and
- The spacing between the panel rows.

This means that early in the morning and late in the evening, the panels will not be directed exactly towards the Sun. Figure 3 below illustrates this.

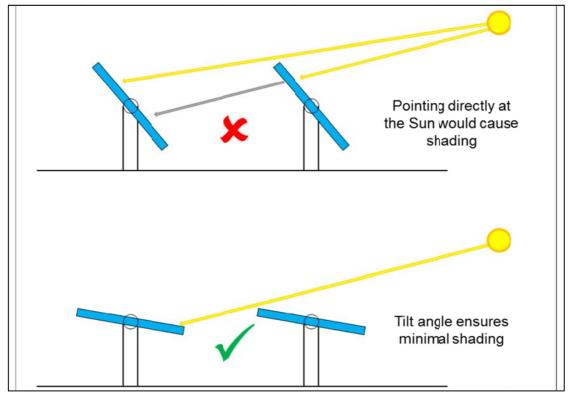


Figure 3 Shading considerations

Later on in the day, the panels can be directed towards the Sun without any shading issues. This is illustrated in Figure 4 below.

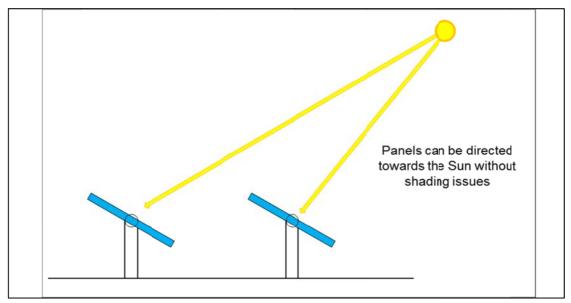


Figure 4 Panel alignment at high solar angles

In reality the lines from the Sun to each panel would be effectively parallel due to the large separation distance. The two previous figures are for illustrative purposes only.

2.3 Proposed Solar Farm Panel Area

Figure 5^2 below (red line) shows the proposed Solar Farm Development Area. Other constraints are also shown.

² Source: © 2018 Google/CNES/Airbus

Figure 5 Solar Farm Development Area

3 GLINT AND GLARE ASSESSMENT METHODOLOGY

3.1 Guideline and Studies Overview

To the author's knowledge, there are no specific guidelines for examining the effect of solar reflections from solar panels with respect to residential amenity or road safety in Australia.

Notwithstanding this, well established guidelines exist in the UK (produced by the CAA³) and in the USA (produced by the FAA⁴) with respect to solar developments and aviation activity. Generic advice has also been provided within UK Planning Policy.

The analysis has therefore been informed by the available guidance and Pager Power's assessment experience. The approach is to identify receptors, undertake geometric reflection calculations using Pager Power's own bespoke glint and glare model, and then to compare against available solar panel reflection studies.

The available studies have measured the intensity of reflections from solar panels with respect to other naturally occurring and manmade surfaces. The overall conclusions from the available independent studies with regard to glint and glare issues from solar panels are as follows:

- Specular reflections of the Sun from solar panels are possible;
- The measured intensity of a reflection from solar panels can vary from 2% to 30% depending on the angle of incidence; and
- Published guidance shows that the intensity of reflections from solar panels are equal to
 or less than those from water. It also shows that reflections from solar panels are
 significantly less intense than many other reflective surfaces which are common in an
 outdoor environment such as those produced from glass and steel⁵.

Appendix A and Appendix B present a review of relevant guidance and independent studies.

3.2 Background

Details of the Sun's movements and solar reflections are presented in Appendix C.

3.3 Methodology

The assessment methodology is based on guidance, studies, previous discussions with stakeholders and Pager Power's practical experience. Information regarding the methodology of the Pager Power glint and glare assessment is presented below:

- Identify receptors in the area surrounding the proposed solar farm;
- Consider direct solar reflections from the proposed solar farm towards the identified receptors by undertaking geometric calculations – accounting for the tracker system;
- Consider the visibility of the panels from the receptor's location. If the panels are not visible from the receptor then no reflection can occur;
- Based on the results of the geometric calculations, determine whether a reflection can occur, and if so, at what time it will occur;
- Consider both the solar reflection from the proposed solar farm and the location of the direct sunlight with respect to the receptor's position;
- Consider the solar reflection with respect to the published studies and guidance; and
- Determine whether a significant detrimental impact is expected.

³ Civil Aviation Authority.

⁴ Federal Aviation Administration.

⁵ SunPower, 2009, SunPower Solar Module Glare and Reflectance (appendix to Solargen Energy, 2010).

Within the Pager Power model, representative points within each solar panel area are modelled, as well as the relevant receptor locations. The result is a chart that illustrates whether a reflection can occur and the approximate duration of any effects. Calculations were undertaken at a resolution of 10 day steps with 10 minute intervals within each assessed day.

The full methodology is set out in Appendix E while further technical details relating to the methodology of the geometric calculations can be found in Appendix C.

3.4 Assessment Limitations

The list of assumptions and limitations are presented in Appendix D.

4 IDENTIFICATION OF RECEPTORS & MODELLING OVERVIEW

4.1 Ground Level Receptors – Overview

There is no legal or formal guidance with regard to the maximum distance at which glint and glare should be assessed. There is also no technical limit to the distance at which reflections could occur.

However, the significance of a reflection decreases with distance. This is because the proportion of an observer's field of vision that is taken up by the reflecting area diminishes as the separation distance increases.

Terrain and shielding by vegetation are also more likely to obstruct an observer's view at longer distances.

A 1km buffer is therefore considered appropriate for glint and glare effects on ground-based receptors. This buffer zone has been determined and deemed appropriate considering existing studies, guidance and Pager Power's assessment experience.

All ground heights have been taken from Pager Power's database, based on interpolated SRTM data.

4.2 Modelling Overview

Figure 6⁶ below shows the assessed solar panel areas that have been used for modelling purposes. Coordinate data for the boundary points is shown in Appendix F. The maximum theoretical panel areas (constraint free areas within the Solar Farm Development Area) have been combined into one area for modelling purposes. The inclusion of areas where development will not occur will not change the overall results.

Figure 6 Modelled points within the solar farm

⁶ Source: © 2018 Google/CNES/Airbus.

The representative panel locations are selected for modelling purposes and only solar panels within 1.5km have been modelled for each individual receptor. The number of assessed panel locations is deemed appropriate for providing a reliable result. An increased resolution would not change the overall results significantly.

4.3 Road Receptors

Road receptors have been identified within the area surrounding proposed solar farm. The assessed road is Darlington-Camperdown Road. Meningoort Road and Blind Creek Road were reviewed however these are dirt roads where very low density traffic would be expected. Therefore an assessment of these is not recommended based on Pager Power's assessment methodology.

The assessed length of road is shown in Figures 7 and 8^7 on the following pages. Approximately 200m separates each point; the total length of road assessed is approximately 9.4km. The co-ordinates of the assessed roads are presented in the Appendix F.

⁷ Source: © 2018 Google/CNES/Airbus.

Figure 7 Road receptors 1-30

Figure 8 Road receptors 19-48

4.4 Dwelling Receptors

Potential dwelling receptors have been identified within the area surrounding proposed solar farm. These dwellings are shown in the Figure 9^8 below.

Figure 9 *Dwelling receptors* The co-ordinates of the assessed dwellings are presented in the Appendix F.

⁸ Source: ©2018 Google/CNES/Airbus.

4.5 Elevated Receptors in Wider Region – Viewpoints

An assessment of three viewpoints in the surrounding landscape has been requested. Their locations are shown in Figure 10⁹ below.

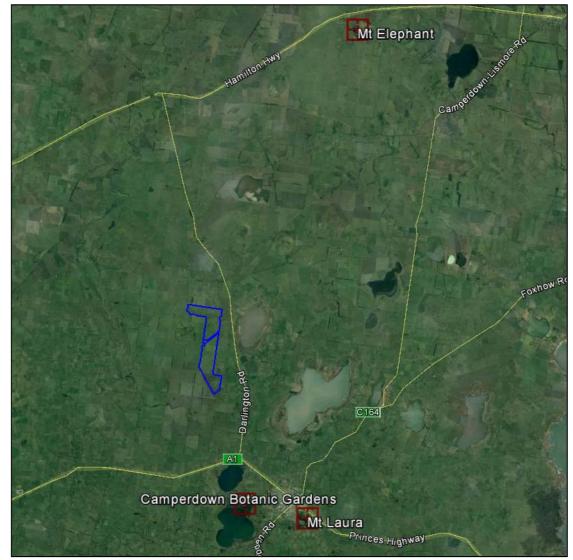


Figure 10 Viewpoint receptors

All three viewpoints (Mt Laura, Camperdown Botanic Gardens and Mt Elephant) are beyond 7km from the proposed solar farm and are situated north and south of the panel area. It is Pager Power's methodology to consider receptors within 1km of a solar panel. Furthermore, no solar reflection would be expected at these viewpoints considering the geographic relationship to the proposed solar farm. Considering this, no impact is expected at these viewpoints and these are therefore not discussed further within this report.

The co-ordinates of the assessed dwellings are presented in the Appendix F.

⁹ Source: ©2018 Google/CNES/Airbus.

4.6 Conditions for a Reflection

The model calculates the angular separation between a reflection and the line from the observer to the reflecting panel. This is illustrated in Figure 11 below.

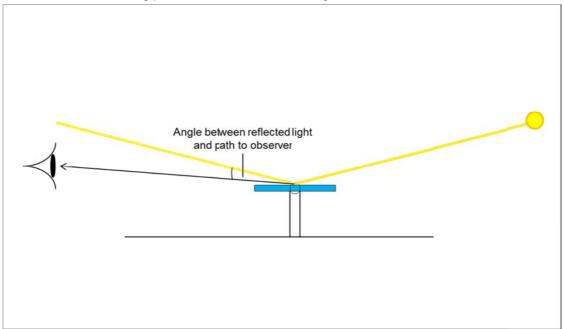


Figure 11 Calculating reflections

It can be seen that if the angle is zero, the observer will experience a direct reflection. Angles above zero indicate that the reflection will pass over the observer, and no reflection would be experienced. It is important to remember that:

- The Sun is not a point source, but has an angular size of approximately 0.5 degrees as seen from Earth.
- The receptor height above ground level is based on a typical value (1.5 metres for road users and 1.8 metres for dwellings). In practice this may vary by, typically¹⁰, one or two metres.
- The terrain height above mean sea level is based on a database, and may vary in practice by a few metres.
- The modelling considers the representative panel locations only (approximately 250 metres separation).

To accommodate for the above, the model identifies scenarios where the separation angle illustrated in Figure 11 is up to 10 degrees. This is considered a conservative approach.

¹⁰ e.g. due to an observer on an upper floor.

5 GLINT AND GLARE ASSESSMENT

5.1 Results

Tables 1 and 2 in the following subsection summarises the months and times during which a solar reflection could be experienced by a receptor.

This does not mean that reflections would occur continuously between the times shown.

The range of times at which reflections are geometrically possible is generally greater than the length of time for any particular day. This is because the times of day at which reflections could start and stop vary throughout the days/months.

Times are in GMT+11 which is the local time in south western Victoria, Australia

Appendix G presents the detailed modelling output in cases where effects are possible.

5.2 Modelling Results Overview – Roads

The results of the geometric calculations for the assessed surrounding roads are presented in in Table 1 below.

	Results		
Receptor	Solar reflection possible?		Conclusion
	am	pm	
R1-R9	No	No	Road locations beyond 1km from the reflecting solar panels. No significant impact expected.
R10	No	Yes – approximately between 20:20 and 20:40 GMT+11 from late November until late January.	
R11	No	Yes – approximately between 19:50 and 20:40 GMT+11 from late October until mid-February.	
R12	No	Yes – approximately between 20:00 and 20:40 GMT+11 from mid-January until early March and again between 19:30 and 20:40 GMT+11 from early October until mid-December.	Solar reflection possible if the reflecting solar panels are visible. Discussed further in Section 6.1.
R13	No	Yes – approximately between 19:10 and 20:40 GMT+11 from late September until early April.	
R14	No	Yes – approximately between 18:30 and 20:40 GMT+11 from mid-August until early May.	
R15	No	Yes – approximately between 18:10 and 20:40 GMT+11 most of the year.	

	Results		
Receptor	Solar reflection possible?		Conclusion
	am	pm	
R16	No	Yes – approximately between 18:00 and 20:40 GMT+11 most of the year.	
R17	No	Yes – approximately between 18:00 and 20:40 GMT+11 most of the year.	
R18	No	Yes – approximately between 18:00 and 20:40 GMT+11 most of the year.	
R19	No	Yes – approximately between 18:00 and 20:40 GMT+11 most of the year.	
R20	No	Yes – approximately between 18:10 and 20:20 GMT+11 from mid-February until late October.	Solar reflection possible if the reflecting solar panels are visible. Discussed further in Section 6.1.
R21	No	Yes – approximately between 18:00 and 20:00 GMT+11 from early March until early October.	
R22	No	Yes – approximately between 18:20 and 19:30 GMT+11 from late March until mid-May and again between 18:30 and 19:10 GMT+11 from late July until late September.	

Receptor	Results Solar reflection possible?		Conclusion
	am	pm	
R23	No	Yes – approximately between 18:10 and 19:00 GMT+11 from early April until June and again between 18:10 and 18:50 GMT+11 from July until late August.	Solar reflection possible if the reflecting solar panels are visible. Discussed further in Section 6.1.
R24-R48	No	No	Road locations beyond 1km from the reflecting solar panels. No significant impact expected.

Table 1 Geometric glint and glare reflection calculation results - roads

5.3 Modelling Results Overview – Dwellings

The results of the geometric calculations for the assessed surrounding dwellings are presented in in Table 2 below.

	Results		
Receptor	Solar reflection possible?		Conclusion
	am	pm	
B-D	No	No	Dwelling locations beyond 1km from the reflecting solar panels. No significant impact expected.
Е	No	Yes – approximately between 18:00 and 20:40 GMT+11 all year round.	Solar reflection possible if the reflecting solar panels are visible. Discussed further in Section 6.2.
F-H	No	No	Dwelling locations beyond 1km from the reflecting solar panels. No significant impact expected.
I	No	Yes – approximately between 18:10 and 19:00 GMT+11 from March until early April until late July.	Solar reflection possible if the reflecting solar panels are visible. Discussed further in Section 6.2.
J	No	No	Dwelling location beyond 1km from the reflecting solar panels. No significant impact expected.
К	No	Yes – approximately between 18:10 and 20:40 GMT+11 most of the year.	Solar reflection possible if the reflection solar panels are visible. Discussed further in Section 6.2.
L	No	Yes – approximately between 19:00 and 20:40 GMT+11 from late September until mid-April.	Solar reflection possible if the reflecting solar panels are visible. Discussed further in Section 6.2.
М	No	No	Dwelling location beyond 1km from the reflecting solar panels. No significant impact expected.

	Results		
Receptor	otor Solar reflection possible?		Conclusion
	am	pm	
N	Yes – approximately between 07:10 and 07:20 GMT+11 from late February until early April and again between 06:30 and 07:30 GMT+11 from late September until late October.	No	Solar reflection possible if the reflecting solar panels are visible. Discussed further in Section 6.2.
O-Q	No	No	Dwelling locations beyond 1km from the reflecting solar panels. No significant impact expected.

Table 2 Geometric glint and glare reflection calculation results – dwellings

RESULTS DISCUSSION 6

6.1 Road Results

Based on a review of the geometric analysis¹¹, road users located at 14 of the 48 assessed road locations could experience a solar reflection from the proposed solar farm (road receptor locations 10-23).

In general, a solar reflection originates from those solar panels immediately west of the road receptor location.

At the remaining assessed road receptor locations, no solar reflection is geometrically possible or the reflecting solar panels are beyond 1km from the assessed road (1-9 and 24-48).

Figure 11¹² on the following page shows the length of road that could experience a solar reflection. The landscape is very flat with sparse vegetation between the solar panels and length of road. Therefore it is deemed that the entire zone may experience a solar reflection, which is approximately 2.6km in length. The effect of proposed screening has not been considered at this stage.

6.1.1 Road Assessment Conclusions

Overall, a solar reflection may only be visible from approximately 2.6km of road.

The Darlington-Camperdown Road where a solar reflection may be visible is classified as an arterial¹³ road. Road users on this road would be expected to be travelling at (up to) 100km/h with a low density of traffic expected. Any solar reflection could last for up to 20 minutes, however in reality, its duration would depend on the speed of the car travelling through the solar reflection zone. Note that not all of the zone will receive a solar reflection at the same time

In accordance with Pager Power's guidance, the impact upon road users with respect to safety is therefore classified as low where the reflecting solar panels are visible. Where the solar panels are not visible, no impact is expected. There is no requirement for mitigation based on Pager Power's Glint and Glare Guidance.

In the event that a solar reflection is experienced by a road user, further comments regarding the scenario in which a solar reflection would be visible and the intensity of any solar reflection experienced are presented Section 6.3. Mitigation is discussed in Section 6.4.

 ¹¹ Considering a 1km boundary.
 ¹² Source: © 2018 Google/CNES/Airbus.

¹³ Local road, as per Pager Power's methodology.



Figure 12 Sections of road that could experience a solar reflection

6.2 **Dwelling Results**

Based on a review of the geometric analysis¹⁴, residents located within five of the 16 assessed dwelling receptors could experience a solar reflection from the proposed solar farm (receptor locations E, I, K, L and N).

At the remaining assessed dwelling receptor locations, no solar reflection is geometrically possible or the reflecting solar panels are beyond 1km from the assessed road (B-D, F-H, J, M, O and P).

Figure 12¹⁵ below shows the dwelling receptor locations that could experience a solar reflection. The landscape is very flat with sparse vegetation between the solar panels and the assessed dwellings. Therefore it is deemed that all dwellings within 1km where a solar reflection is geometrically possible would have view of the reflecting solar panels. The effect of proposed screening has not been considered at this stage.

Figure 13 Dwellings that could experience a solar reflection

¹⁴ Considering a 1km boundary.

¹⁵ Source: © 2018 Google/CNES/Airbus.

6.2.1 Dwelling Assessment Conclusions

Overall, a solar reflection is deemed possible towards five surrounding dwellings considering a bare earth model. Proposed intervening screening would reduce the duration and likelihood of impact and is discussed in Section 6.4.

Unmitigated, solar reflections would last for up to 20 minutes on any one day at any one location and only from windows with a clear view of the reflecting solar panels. Solar reflections would only occur on days when the weather is clear and sunny. See Table 2 and Appendix G for the detailed results breakdown.

The potential reflections would last for more than three months a year but less than 60 minutes per day. In accordance with the methodology set out in Section 3 and Appendix E (for dwellings), the resulting impact significance is <u>low</u> to <u>moderate</u>. If screening removes the solar panels from view, then there will be <u>no impact</u>. There is no requirement for mitigation based on Pager Power's Glint and Glare Guidance however this is considered in Section 6.4.

In the event that a solar reflection is experienced by resident within a surrounding dwelling, further comments are presented in the following sub-section.

For completeness, mitigation options are presented in Section 6.4.

6.3 Results Discussion Regarding Reflections from Solar Panels

The geometric solar reflection calculations have determined that glint and glare effects are possible at five dwellings and a length of road totalling approximately 2.6km (worst-case). Overall, low to moderate impact upon residential amenity is expected and a low impact upon road safety is expected. Further comments are presented below regarding the scenario in which a solar reflection could be experienced by surrounding receptors.

In all scenarios where a solar reflection is geometrically possible towards surrounding roads and dwellings, direct sunlight would coincide with the solar reflection. This means that the viewer will likely be able to see the glare from the reflecting solar panels as well as the Sun directly. Therefore, in this similarly assessed scenario, even if a solar reflection from the panel is experienced by a receptor, the direct sunlight will also be experienced. It is important to note that the direct sunlight would be a significantly brighter source of light when compared to the solar reflection. Lastly, at any one location, only a particular area of solar panels will produce a solar reflection towards it. Note that not all receptors will experience a solar reflection at the same time.

A view of a solar reflection from within the assessed dwellings would only occur where there is a clear view of the reflecting solar panels at the particular time of day when a solar reflection was geometrically possible. In addition, the weather would also have to be clear and sunny.

To experience a solar reflection from the road, a road user would need to be located within the reflection zones, and have a clear view of the reflecting solar panels at the particular time of day when a solar reflection was geometrically possible. In addition, the weather would also have to be clear and sunny. In all cases, the driver would then also be looking in the general direction of the Sun.

6.4 Mitigation and Recommendations

There is no requirement for mitigation based on the results of the analysis however it should be considered for dwelling receptors E, I, K, L and N where a solar reflection is possible. Visibility of the proposed solar farm for these dwellings has been determined via a site survey¹⁶. The results are presented in Table 3 on the following page.

¹⁶ Completed by the client

Dwelling	Expected Visibility
E	No visibility as viewed from within site, thought to be unoccupied.
I	Good screening from existing shelter belt, may be some views but not conclusive.
к	Views of northern half of site from property, potentially from house but not conclusive.
L	Screened completely by existing vegetation, views from drive.
Ν	Screened completely by existing vegetation, limited views from extended drive.

Table 3 Dwelling visibility site survey results

In addition 4m screening will be installed at the site boundary between dwellings E, I, K which will likely remove any visibility that remains. This is because the landscape is relatively flat, the distance between receptors and panels is relatively large and the solar panels are 4m tall at their maximum tilt, equal to the screening height. Therefore any predicted impacts at these dwellings, and also the roads, would likely be removed.

7 OVERALL CONCLUSIONS

7.1 Road Results

Overall, a low impact upon road users (at worst) on the assessed roads is expected. The overall results and reasoning are presented below.

- Solar reflections are theoretically possible towards approximately 2.6km of Darlington Road;
- The road is classified as an arterial road;
- Road users would be expected to be travelling at (up to) 100 km/h with a low density of traffic expected;
- Any solar reflection could last for up to 20 minutes, however in reality, its duration would depend on the speed of the car travelling through the solar reflection zone. Note that not all of the zone will produce a solar reflection towards the road at the same time;
- In accordance with the methodology set out in Section 3 and Appendix E, the overall expected impact upon road users with respect to safety is classified as low where the reflecting solar panels are visible. Proposed screening has not been yet been considered.

7.2 **Dwelling Results**

Overall, a low to moderate impact upon residential amenity is expected (at worst). Where the solar panels are not visible, no impact is expected. The overall results and reasoning are presented below.

- Solar reflections are possible towards five of the assessed dwelling receptors based on the modelling. The visibility of the reflecting solar panels cannot be confirmed based on the available imagery and therefore the conclusions are considered conservative;
- At these five dwellings, the solar reflections would last for up to 20 minutes per day potentially all year round. The results vary per dwelling therefore please see Table 3 and Appendix G for the detailed results breakdown for each dwelling;
- In all cases, a clear view of the reflecting solar panels at the particular time of day when a solar reflection was geometrically possible would be required. In addition, the weather would also have to be clear and sunny;
- In all scenarios where a solar reflection is geometrically possible towards the surrounding dwellings, direct sunlight would coincide with the solar reflection. Direct sunlight is significantly more intense than reflections form solar panels;
- In accordance with the methodology set out in Section 3 and Appendix E (for dwellings), the resulting impact significance is low to moderate. If screening removes the solar panels from view, no impact will be possible.

7.3 Council Viewpoints

All three viewpoints (Mt Laura, Camperdown Botanic Gardens and Mt Elephant) are beyond 7km from the proposed solar farm and are situated north and south of the panel area. It is Pager Power's methodology to consider receptors within 1km of a solar panel. Furthermore, no solar reflection would be expected at these viewpoints considering the geographic relationship to the proposed solar farm. Considering this, no impact is expected at these viewpoints.

APPENDIX A – OVERVIEW OF GLINT AND GLARE GUIDANCE

This section presents details regarding the relevant guidance and studies with respect to the considerations and effects of solar reflections from solar panels, known as 'Glint and Glare'. Whilst there is little formal guidance with regard to the assessment of this issue, Pager Power has reviewed relevant publications pertaining to glint and glare. Relevant extracts from guidance published in the UK is presented below for reference.

This is not a comprehensive review of the data sources, rather it is intended to give an overview of the important parameters and considerations that have informed this assessment.

UK Planning Policy

UK National Planning Practice Guidance dictates that in some instances a glint and glare assessment is required however, there is no specific guidance with respect to the methodology for assessing the impact of glint and glare.

The planning policy from the Department for Communities and Local Government (paragraph 27¹⁷) states:

'Particular factors a local planning authority will need to consider include... the effect on landscape of glint and glare and on **<u>neighbouring uses and aircraft safety</u>**.'

The National Planning Policy Framework for Renewable and Low Carbon Energy¹⁸ (specifically regarding the consideration of solar farms) states:

'What are the particular planning considerations that relate to large scale ground-mounted solar photovoltaic Farms?

The deployment of large-scale solar farms can have a negative impact on the rural environment, particularly in undulating landscapes. However, the visual impact of a well-planned and well-screened solar farm can be properly addressed within the landscape if planned sensitively.

Particular factors a local planning authority will need to consider include:

- the proposal's visual impact, the effect on landscape of glint and glare (see guidance on landscape assessment) and on <u>neighbouring uses and aircraft safety</u>;
- the extent to which there may be additional impacts if solar arrays follow the daily movement of the sun;

The approach to assessing cumulative landscape and visual impact of large scale solar farms is likely to be the same as assessing the impact of wind turbines. However, in the case of ground-mounted solar panels it should be noted that with effective screening and appropriate land topography the area of a zone of visual influence could be zero.'

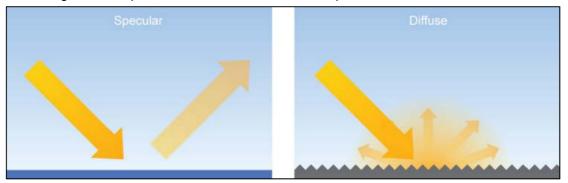
Assessment Process

No process for determining and contextualising the effects of glint and glare are, however, provided. Therefore, the Pager Power approach is to determine whether a reflection from the proposed solar farm is geometrically possible and then to compare the results against the relevant guidance/studies to determine whether the reflection is significant.

 ¹⁷ http://planningguidance.planningportal.gov.uk/blog/guidance/renewable-and-low-carbon-energy/
 ¹⁸Reference ID: 5-013-20140306, paragraph 13-

^{13,}http://planningguidance.planningportal.gov.uk/blog/guidance/renewable-and-low-carbon-energy/particularplanning-considerations-for-hydropower-active-solar-technology-solar-farms-and-wind-turbines/

APPENDIX B – OVERVIEW OF GLINT AND GLARE STUDIES


Overview

Studies have been undertaken assessing the type and intensity of solar reflections from various surfaces including solar panels. An overview of these studies is presented below.

There are no specific studies for determining the effect of reflections from solar panels with respect to dwellings. The guidelines presented are related to aviation safety. The results are applicable for the purpose of this analysis.

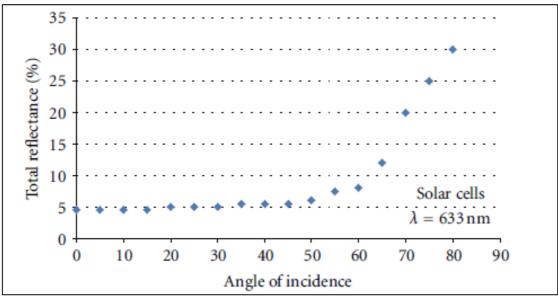
Reflection Type from Solar Panels

Based on the surface conditions reflections from light can be specular and diffuse. A specular reflection has a reflection characteristic similar to that of a mirror; a diffuse will reflect the incoming light and scatter it in many directions. The figure below¹⁹, taken from the FAA guidance, illustrates the difference between the two types of reflections. Because solar panels are flat and have a smooth surface most of the light reflected is specular, which means that incident light from a specific direction is reradiated in a specific direction.

Specular and diffuse reflections

Solar Reflection Studies

An overview of content from identified solar panel reflectivity studies is presented in the subsections below.


Evan Riley and Scott Olson, "A Study of the Hazardous Glare Potential to Aviators from Utility-Scale Flat-Plate Photovoltaic Systems"

Evan Riley and Scott Olson published in 2011 their study titled: A Study of the Hazardous Glare Potential to Aviators from Utility-Scale Flat-Plate Photovoltaic Systems²⁰". They researched the potential glare that a pilot could experience from a 25 degree fixed tilt PV system located outside of Las Vegas, Nevada. The theoretical glare was estimated using published ocular safety metrics which quantify the potential for a postflash glare after-image. This was then compared to the postflash glare after-image caused by smooth water. The study demonstrated that the reflectance of the solar cell varied with angle of incidence, with maximum values occurring at angles close to 90 degrees. The reflectance values varied from approximately 5% to 30%. This is shown on the figure on the following page.

¹⁹ http://www.faa.gov/airports/environmental/policy_guidance/media/airport_solar_guide_print.pdf

²⁰ Evan Riley and Scott Olson, "A Study of the Hazardous Glare Potential to Aviators from Utility-Scale Flat-Plate Photovoltaic Systems," ISRN Renewable Energy, vol. 2011, Article ID 651857, 6 pages, 2011. doi:10.5402/2011/651857

Total reflectance % when compared to angle of incidence

The conclusions of the research study were:

- The potential for hazardous glare from flat-plate PV systems is similar to that of smooth water;
- Portland white cement concrete (which is a common concrete for runways), snow, and structural glass all have a reflectivity greater than water and flat plate PV modules.

FAA Guidance- "Technical Guidance for Evaluating Selected Solar Technologies on Airports"²¹

The 2010 FAA Guidance included a diagram which illustrates the relative reflectance of solar panels compared to other surfaces. The figure shows the relative reflectance of solar panels compared to other surfaces. Surfaces in this figure produce reflections which are specular and diffuse. A specular reflection (those made by most solar panels) has a reflection characteristic similar to that of a mirror. A diffuse reflection will reflect the incoming light and scatter it in many directions. A table of reflectivity values, sourced from the figure²² within the FAA guidance, is presented on the following page.

²¹ FAA, November (2010): Technical Guidance for Evaluating Selected Solar Technologies on Airports.

²² http://www.faa.gov/airports/environmental/policy_guidance/media/airport_solar_guide_print.pdf

Surface	Approximate Percentage of Light Reflected ²³
Snow	80
White Concrete	77
Bare Aluminium	74
Vegetation	50
Bare Soil	30
Wood Shingle	17
Water	5
Solar Panels	5
Black Asphalt	2

Relative reflectivity of various surfaces

Note that the data above does not appear to consider the reflection type (specular or diffuse).

An important comparison in this table is the reflectivity compared to water which will produce a reflection of very similar intensity when compared to that from a solar panel. The study by Riley and Olsen study (2011) also concludes that still water has a very similar reflectivity to solar panels.

SunPower Technical Notification (2009)

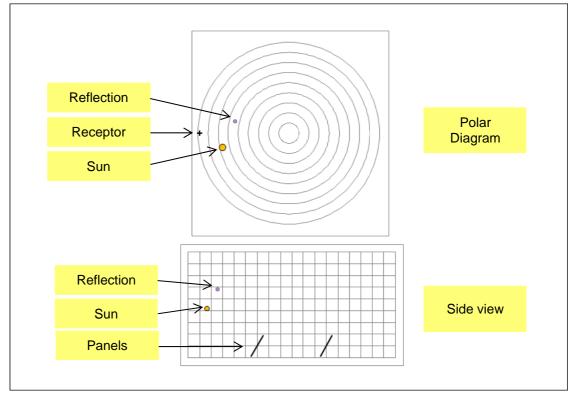
SunPower published a technical notification²⁴ to '*increase awareness concerning the possible glare and reflectance impact of PV Systems on their surrounding environment*'. The study revealed that the reflectivity of a solar panel is considerably lower than that of '*standard glass and other common reflective surfaces*'. With respect to aviation and solar reflections observed from the air, SunPower has developed several large installations near airports or on Air Force bases. It is stated that these developments have all passed FAA or Air Force standards with all developments considered "No Hazard to Air Navigation". The note suggests that developers discuss any possible concerns with stakeholders near proposed solar farms.

Figures within the document show the relative reflectivity of solar panels compared to other natural and manmade materials including smooth water, standard glass and steel. The results, similarly to those from Riley and Olsen study (2011) and the FAA (2010), show that solar panels produce a reflection that is less intense than those produced from these surfaces.

²³ Extrapolated data, baseline of 1,000 W/m² for incoming sunlight.

²⁴ Technical Support, 2009. SunPower Technical Notification- Solar Module Glare and Reflectance.

APPENDIX C – PAGER POWER'S REFLECTION CALCULATIONS METHODOLOGY


The calculations are three dimensional and complex, accounting for:

- The Earth's orbit around the Sun;
- The Earth's rotation;
- The Earth's orientation;
- The reflector's location;
- The reflector's 3D Orientation including consideration of the tracking mechanism.

Reflections from a flat reflector are calculated by considering the normal which is an imaginary line that is perpendicular to the reflective surface and originates from it.

A single axis system such as Sun Power rotates panels from east to west so that they face the Sun as it passes through the sky during the day. At very low solar altitudes the panels flatten so that one row of panels does not cast a shadow on the next. Pager Power's computer algorithm determines the amount of panel tilt based on (1) the predicted position of the Sun; (2) how far the panel can actually tilt - determined by the physical characteristics of the tilting mechanism and (3) the shadow that will be cast on the neighbouring row of panels.

The diagram below illustrates one step in the iterative modelling process, showing the position of the Sun, the angle of the panels and the direction of the reflection at a single point in time.

APPENDIX D – ASSESSMENT LIMITATIONS AND ASSUMPTIONS

Calculations have been undertaken for panel locations at each boundary point of the site, and the site centre. In each case, the modelled altitude of the panels is the same across the development. This is an appropriate assumption because the modelled area is relatively flat.

Only a reflection from the face of the panel has been considered. The frame or the reverse of the solar panel has not been considered.

The model assumes that a receptor can view the face of every panel within the proposed solar farm area whilst in reality this, in the majority of cases, will not occur.

Therefore any predicted reflection from the face of a solar panel that is not visible to a receptor will not occur.

A finite number of points within the proposed solar farm are chosen in order to build a comprehensive understanding of the entire solar farm. This determines whether a reflection could ever occur at a chosen receptor. The calculations do not incorporate all of the possible panel locations within the solar farm outline.

A single reflection point on the panel has been chosen for the geometric calculations. This will suitably determine whether a reflection can be experienced at a location and the general time of year and duration of this reflection. Increased accuracy could be achieved by increasing the number of heights assessed however this would only marginally change the results and is not considered significant.

Whilst line of sight to the solar farm from receptors has been considered, only available street view imagery and satellite mapping has been used. In some cases this imagery may not be up to date and may not give the full perspective of the installation from the location of the assessed receptor.

Any screening in the form of trees, buildings etc. that may obstruct the Sun from view of the solar panels is not considered unless stated.

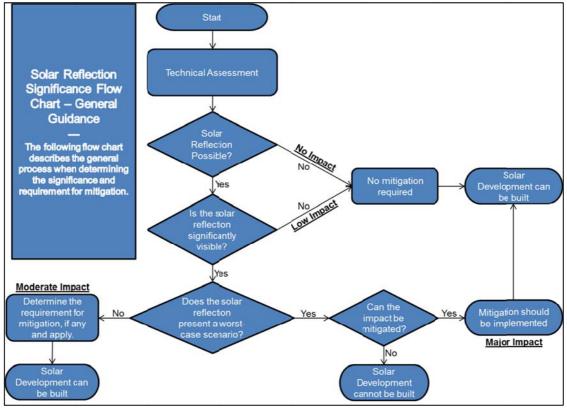
APPENDIX E – ASSESSMENT METHODOLOGY

Overview

The significance of glint and glare will vary for different receptors. The following section presents a general overview of the significance criteria with respect to experiencing a solar reflection.

Impact significance definition

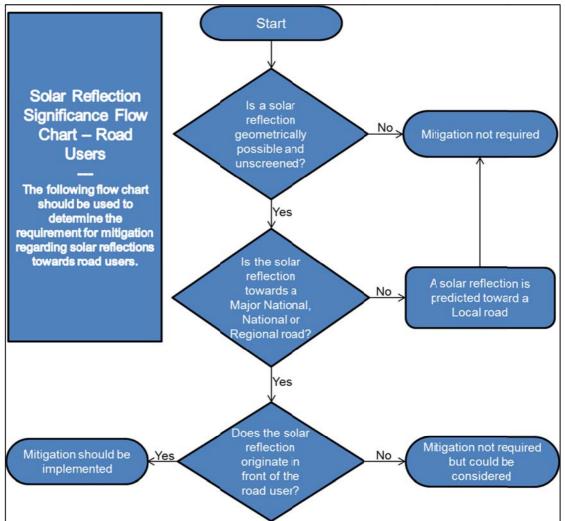
The table below presents the recommended definition of 'impact significance' in glint and glare terms and the requirement for mitigation under each.


Impact Significance	Definition	Mitigation Requirement
No Impact	A solar reflection is not geometrically possible or will not be visible from the assessed receptor.	No mitigation required.
Low	A solar reflection is geometrically possible however any impact is considered to be small such that mitigation is not required e.g. intervening screening will limit the view of the reflecting solar panels.	No mitigation required.
Moderate	A solar reflection is geometrically possible and visible however it occurs under conditions that do not represent a worst-case.	Whilst the impact may be acceptable, consultation and/or further analysis should be undertaken to determine the requirement for mitigation.
Major	A solar reflection is geometrically possible and visible under conditions that will produce a significant impact. Mitigation and consultation is recommended.	Mitigation will be required if the proposed solar development is to proceed.

Impact significance definition

Assessment Process – General

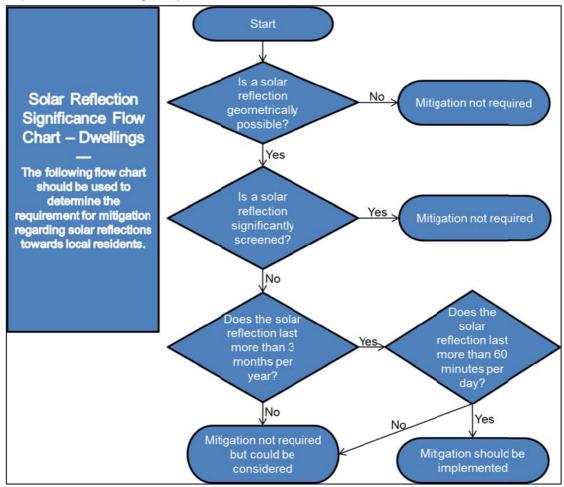
The flow chart presented below shows the general process for establishing a mitigation requirement for a glint and glare impact.



General mitigation requirement flow chart

Assessment process for road receptors

The flow chart presented below has been followed when determining the mitigation requirement for road receptors.



Road receptor mitigation requirement flow chart

Assessment process for dwelling receptors

The flow chart presented below has been followed when determining the mitigation requirement for dwelling receptors.

Dwelling receptor mitigation requirement flow chart

APPENDIX F – COORDINATE DATA

Road Receptors

ID	Long. (°)	Lat. (°)	Z amsl + receptor height (m)	No.	Long. (°)	Lat. (°)	Z amsl + receptor height (m)
01	143.097	-38.1054	150.0	25	143.1055	-38.1477	147.0
02	143.0977	-38.1071	148.5	26	143.1058	-38.1495	145.9
03	143.0985	-38.1088	147.0	27	143.1062	-38.1513	145.3
04	143.0993	-38.1106	146.8	28	143.1066	-38.1531	145.6
05	143.1	-38.1122	145.2	29	143.107	-38.1549	146.1
06	143.1008	-38.1139	144.3	30	143.1076	-38.1567	143.8
07	143.1014	-38.1157	143.9	31	143.1081	-38.1583	143.4
08	143.1018	-38.1174	145.8	32	143.1088	-38.16	147.1
09	143.102	-38.1192	144.5	33	143.1098	-38.1617	149.0
10	143.1021	-38.121	145.4	34	143.1107	-38.1633	146.5
11	143.1022	-38.1228	146.3	35	143.1115	-38.165	146.6
12	143.1023	-38.1246	147.5	36	143.1122	-38.1667	147.7
13	143.1023	-38.1264	147.9	37	143.113	-38.1684	145.5
14	143.1024	-38.1282	145.9	38	143.1134	-38.1702	147.1
15	143.1025	-38.13	146.9	39	143.1134	-38.172	148.3
16	143.1027	-38.1318	143.4	40	143.1132	-38.1738	152.6
17	143.1028	-38.1336	143.4	41	143.1129	-38.1756	154.0
18	143.103	-38.1354	145.5	42	143.1127	-38.1774	153.5
19	143.1033	-38.1372	145.7	43	143.1125	-38.1792	154.4
20	143.1037	-38.139	145.9	44	143.1124	-38.1809	155.5
21	143.104	-38.1407	146.5	45	143.1122	-38.1827	155.2
22	143.1044	-38.1425	146.7	46	143.112	-38.1845	155.2
23	143.1048	-38.1442	148.0	47	143.1118	-38.1863	154.5
24	143.1051	-38.146	145.9	48	143.1117	-38.1883	155.1

Dwelling Receptors

ID	Long. (°)	Lat. (°)
В	143.1065	-38.1687
С	143.1087	-38.1696
D	143.1145	-38.1673

ID	Long. (°)	Lat. (°)
Е	143.0981	-38.1586
F	143.1061	-38.1562
G	143.1048	-38.1478
Н	143.1067	-38.1474
I	143.1024	-38.1435
J	143.1074	-38.1493
K	143.1017	-38.1295
L	143.1035	-38.1271
М	143.0686	-38.1347
Ν	143.0725	-38.1352
0	143.1031	-38.1123
Р	143.112	-38.1773
Q	143.1068	-38.1802

Viewpoint Receptors

ID	Long. (°)	Lat. (°)	Z amsl ²⁵ (m)
Mt Laura	143.158241	-38.243711	270
Camperdown Botanic Gardens	143.112309	-38.235422	256
Mt Elephant	143.195069	-37.960936	368

Panel Area Boundary Co-Ordinates

ID	Long. (°)	Lat. (°)	ID	Long. (°)	Lat. (°)
1	143.0697	-38.1199	42	143.0815	-38.1434
2	143.0953	-38.1229	43	143.0814	-38.1441
3	143.0946	-38.1271	44	143.0823	-38.1442
4	143.0945	-38.1271	45	143.0825	-38.1427
5	143.0944	143.0944 -38.1271 46 143.0928		143.0928	-38.1366
6	143.094	-38.1272	47	143.093	-38.1356
7	143.094	-38.1272	48	143.0839	-38.141
8	143.0937	-38.1275	49	143.0832	-38.1402
9	143.0935	-38.1277	50	143.0817	-38.1411
10	143.0934	-38.1278	51	143.0815	-38.1424

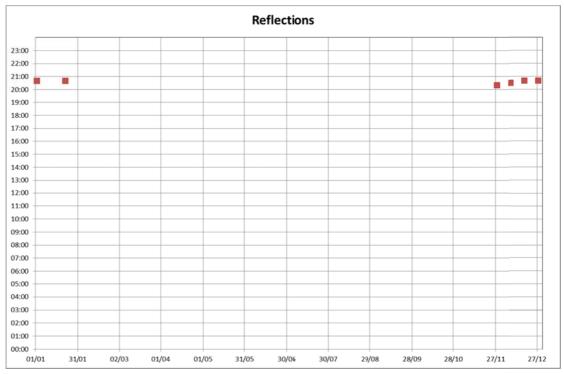
²⁵ Provided by developer

ID	Long. (°)	Lat. (°)	ID	Long. (°)	Lat. (°)
11	143.0935	-38.1281	52	143.0811	-38.1427
12	143.0935	-38.1286	53	143.0815	-38.1406
13	143.094	-38.1291	54	143.083	-38.1325
14	143.0942	-38.1292	55	143.0839	-38.1273
15	143.0929	-38.1364	56	143.076	-38.1263
16	143.0923	-38.1397	57	143.075	-38.1258
17	143.0894	-38.1554	58	143.0748	-38.1257
18	143.0894	-38.1555	59	143.0745	-38.1256
19	143.0884	-38.1606	60	143.0742	-38.1256
20	143.095	-38.1614	61	143.0739	-38.1256
21	143.0933	-38.1696	62	143.0733	-38.1257
22	143.0895	-38.1719	63	143.0727	-38.1259
23	143.0888	-38.1717	64	143.0715	-38.1258
24	143.0871	-38.1693	65	143.0712	-38.1252
25	143.0872	-38.1686	66	143.0704	-38.1243
26	143.0866	-38.1686	67	143.0701	-38.1241
27	143.085	-38.1663	68	143.0693	-38.1237
28	143.0852	-38.1662	69	143.0694	-38.1236
29	143.0845	-38.165	70	143.0695	-38.1234
30	143.0842	-38.1651	62 143.0733 63 143.0727 64 143.0715 65 143.0712 66 143.0704 67 143.0701 68 143.0693 69 143.0694 70 143.0695 71 143.0694 72 143.0694 73 143.0694 74 143.0695 75 143.0695		-38.1233
31	143.0799	-38.1588	72	143.0694	-38.1231
32	143.0801	-38.1587	73	143.0694	-38.123
33	143.0785	-38.1564	74	143.0693	-38.1229
34	143.0782	-38.1565	75	143.0695	-38.1228
35	143.0781	-38.1562	76	143.0697	-38.1226
36	143.0782	-38.1559	77	143.0698	-38.1224
37	143.0782	-38.1558	78	143.0701	-38.122
38	143.0785	-38.1543	79	143.0702	-38.1215
39	143.0789	-38.1543	80	143.0703	-38.1212
40	143.08	-38.1488	14 61 143.0739 96 62 143.0733 19 63 143.0727 17 64 143.0715 93 65 143.0712 36 66 143.0704 36 66 143.0704 36 67 143.0701 53 68 143.0693 52 69 143.0694 55 70 143.0695 51 71 143.0694 53 73 143.0694 54 74 143.0693 55 75 143.0695 52 76 143.0693 54 74 143.0693 55 75 143.0695 56 75 143.0695 58 78 143.0701 43 79 143.0702 43 80 143.0703		-38.1208
41	143.0809	-38.1437	82	143.0699	-38.1202

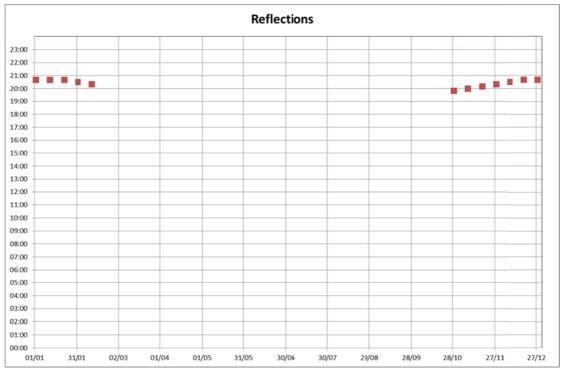
Panel Area Reflection Reference Points

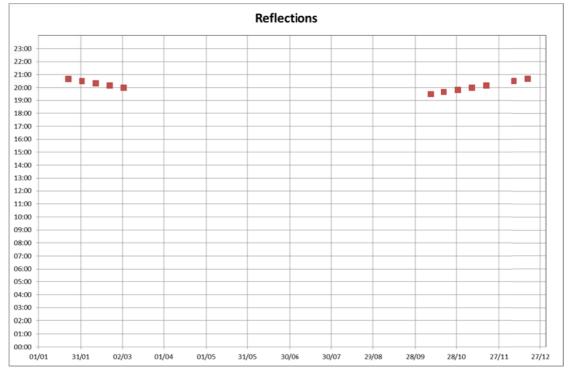
Reflect	or Long. (°)	Lat. (°)	Z (ground height + panel height) (m)				
R1	143.0864	-38.1674	144.4				

Reflector	Long. (°)	Lat. (°)	Z (ground height + panel height) (m)
R2	143.0922	-38.1674	142.5
R3	143.0864	-38.1629	143.0
R4	143.0922	-38.1629	142.7
R5	143.0807	-38.1584	143.0
R6	143.0864	-38.1584	142.6
R7	143.0807	-38.1539	142.2
R8	143.0864	-38.1539	142.0
R9	143.0807	-38.1494	143.3
R10	143.0864	-38.1494	143.0
R11	143.0864	-38.1449	143.3
R12	143.0921	-38.1404	143.6
R13	143.0864	-38.1359	144.1
R14	143.0921	-38.1359	143.9
R15	143.0864	-38.1314	145.2
R16	143.0921	-38.1314	143.7
R17	143.0807	-38.1269	146.5
R18	143.0864	-38.1269	145.3
R19	143.0921	-38.1269	144.0
R20	143.075	-38.1224	145.8
R21	143.0807	-38.1224	143.8
R22	143.0864	-38.1224	145.0

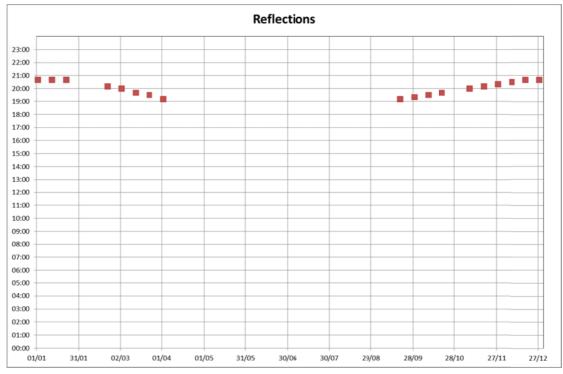


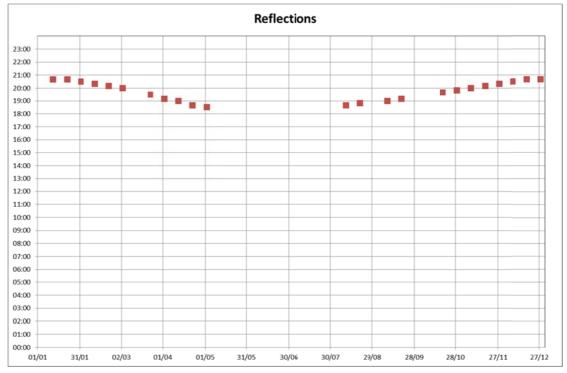
APPENDIX G – GEOMETRIC CALCULATION RESULTS

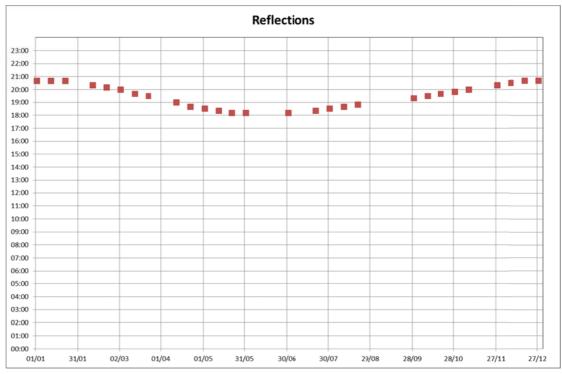

The charts for the receptors are shown on the following pages. Each chart shows the reflection date/time graph. The brown icons indicate the dates and times at which geometric reflections are possible. This is based on a 10 degree criteria (discussed in Section 4.5). The results are combined for all assessed points within the proposed solar farm.

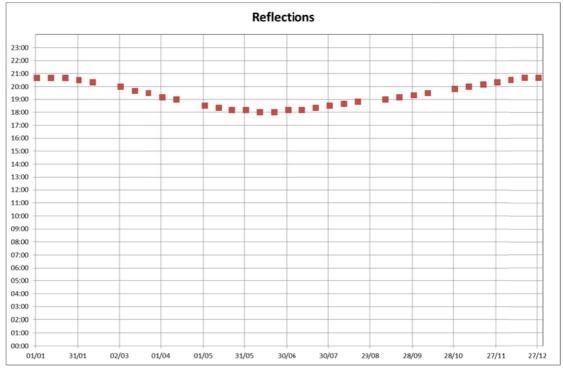

Road Receptors

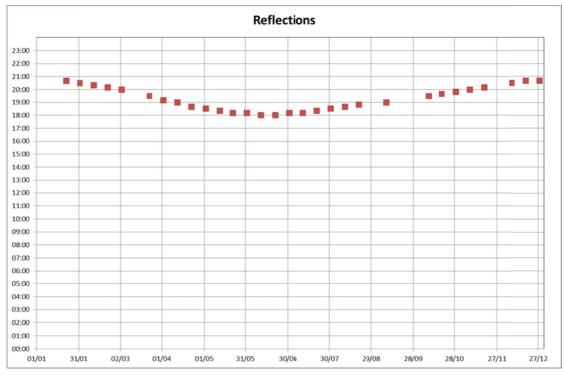
The glint and glare charts at the receptors where a solar reflection is geometrically possible, not considering existing screening, are presented below.

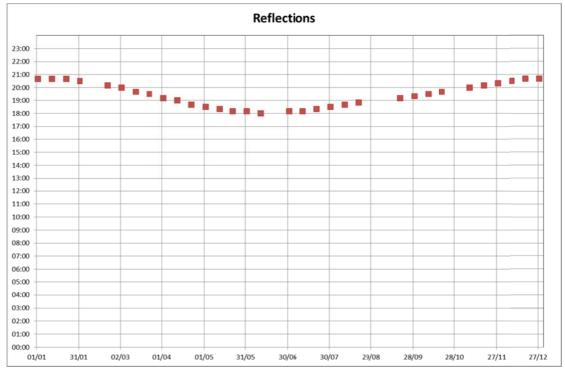


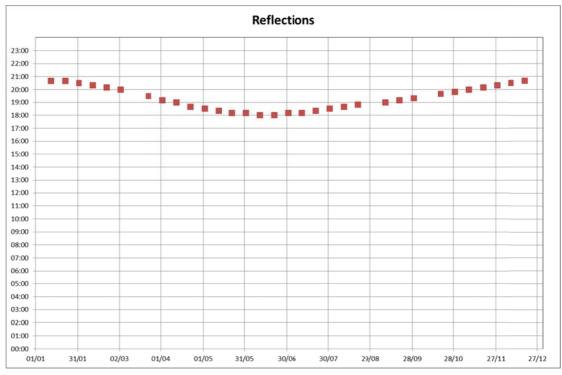


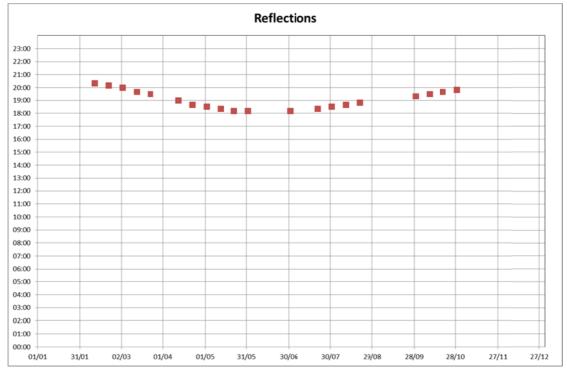


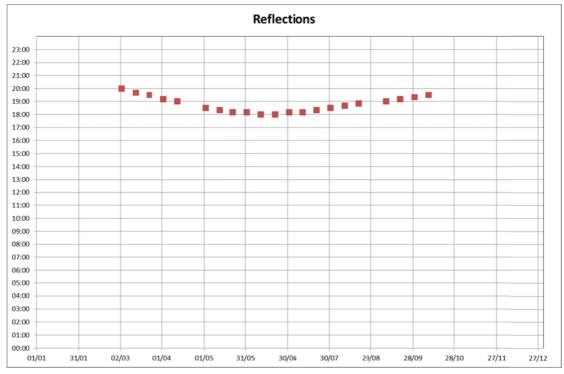


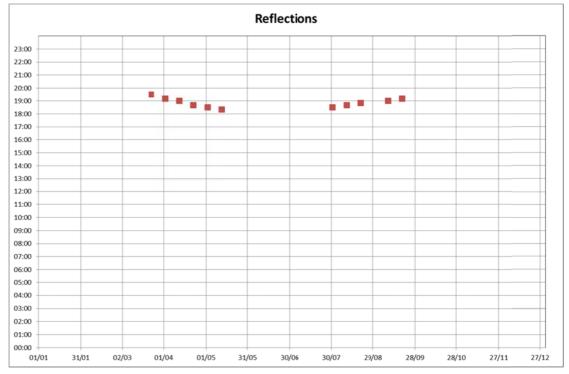


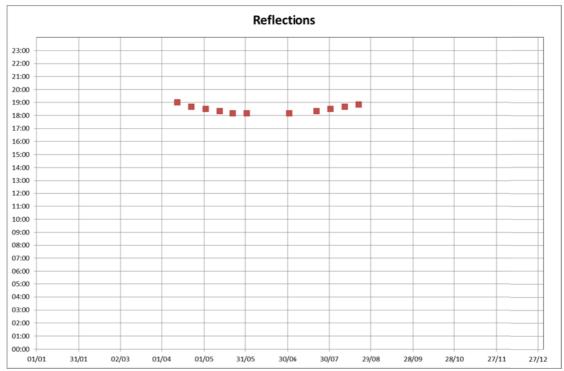


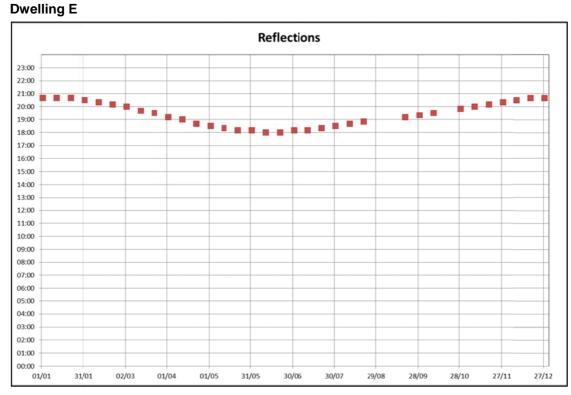


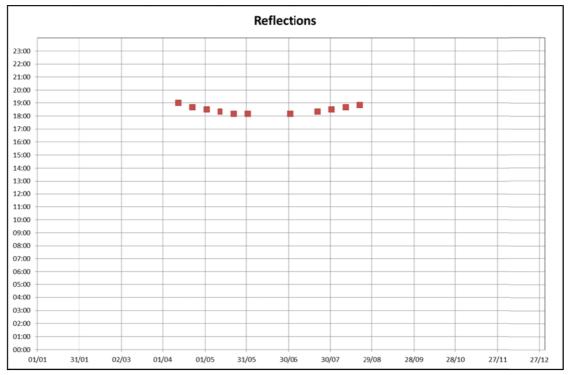






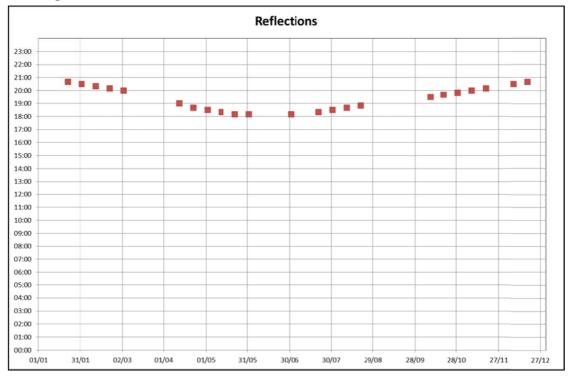




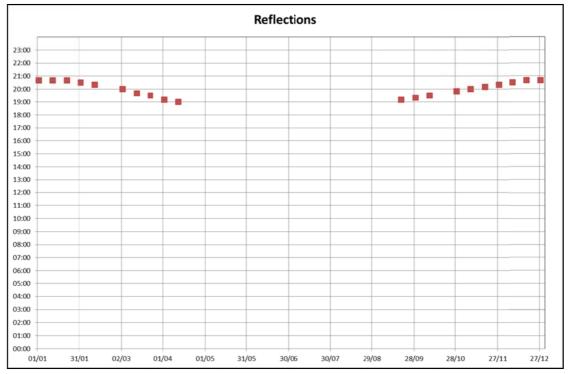


Dwelling Receptors

The glint and glare charts at the receptors where a solar reflection is geometrically possible, not considering existing screening, are presented below.



Dwelling I



Dwelling K

Dwelling L

Dwelling N

Reflections												
23:00												
22:00												
21:00												
20:00												
19:00												
18:00												
17:00												
16:00												
15:00												
14:00												
13:00												
12:00												
11:00												
10:00												
09:00												
08:00									-			
07:00			-									
06:00												
05:00												
04:00												
03:00												
02:00												
01:00												
00:00		02/03	01/04	01/05	31/05	30/06	30/07	29/08	28/09	28/10	27/11	27/1

Pager Power Limited South Suffolk Business Centre Alexandra Road Sudbury Suffolk CO10 2ZX

Tel: +44 1787 319001 Email: info@pagerpower.co.uk Web: www.pagerpower.com